Structure Reports

Online
ISSN 1600-5368

Venkataraya Shettigar, ${ }^{\text {a }}$
 Jeannie Bee-Jan Teh, ${ }^{\text {b }}$
 Hoong-Kun Fun, ${ }^{\mathbf{b}_{*}}$ Ibrahim Abdul Razak, ${ }^{\text {b }}$
 P. S. Patil ${ }^{\mathrm{a}}$ and
 S. M. Dharmaprakash ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and ${ }^{\text {b }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
R factor $=0.039$
$w R$ factor $=0.103$
Data-to-parameter ratio $=23.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

3,4-Dimethoxychalcone

In the title molecule, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$, the dihedral angle between the benzene rings is $25.75(3)^{\circ}$. The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

As part of our study on non-linear optical chalcone derivatives (Patil et al., 2006a,b,c), we report here the synthesis and crystal structure of the title compound, (I). Crystals of (I) can potentially exhibit second-order non-linear optical properties as the compound crystallizes in a non-centrosymmetric space group. A quantitative estimation has yet to be performed.

(I)

Bond lengths and angles in (I) have normal values (Allen et al., 1987), comparable with related structures (Teh et al., 2006; Patil et al., 2006a,b,c). The least-squares plane through the enone group (atoms C7-C9/O1) makes dihedral angles of 26.77 (5) and 25.32 (5) ${ }^{\circ}$ with the $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 10-\mathrm{C} 15$ benzene rings, respectively. The dihedral angle between the two benzene rings is 25.75 (3) ${ }^{\circ}$. The methoxy groups at C12 and C 13 are almost coplanar with the $\mathrm{C} 10-\mathrm{C} 15$ benzene ring, with $\mathrm{C} 16-\mathrm{O} 2-\mathrm{C} 12-\mathrm{C} 11$ and $\mathrm{C} 17-\mathrm{O} 3-\mathrm{C} 13-\mathrm{C} 14$ torsion angles of $-6.29(15)$ and $-9.36(14)^{\circ}$, respectively.

An intramolecular $\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O} 1$ hydrogen bond generates an $S(5)$ ring motif (Bernstein et al., 1995). The crystal structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving the C1-C6 benzene ring (Table 1).

Experimental

Acetophenone (0.01 mol) in ethanol (25 ml) was mixed with 3,4dimethoxybenzaldehyde (0.01 mol) in ethanol (25 ml) and the mixture was treated with an aqueous solution of sodium hydroxide ($5 \mathrm{ml}, 30 \%$). This mixture was stirred well and left for 24 h . The resulting crude solid mass was collected by filtration and recrystallized from acetone.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$	$Z=16$
$M_{r}=268.30$	$D_{x}=1.330 \mathrm{Mg} \mathrm{m}^{-3}$
Orthorhombic, $F d d 2$	Mo $K \alpha$ radiation
$a=27.7541(4) \AA$	$\mu=0.09 \mathrm{~mm}^{-1}$
$b=34.1948(4) \AA$	$T=100.0(1) \mathrm{K}$
$c=5.6487(1) \AA$	Block, yellow
$V=5360.88(14) \AA^{3}$	$0.51 \times 0.37 \times 0.33 \mathrm{~mm}$

Data collection

Brucker SMART APEX2 CCD area-detector diffractometer ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.882, T_{\text {max }}=0.971$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0615 P)^{2}\right. \\
& +1.2638 P]
\end{aligned}
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$S=1.08$
4202 reflections
183 parameters
H -atom parameters constrained
$\Delta \rho_{\max }=0.43$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C9-H9A $\cdots \mathrm{O} 1$	0.93	2.42	$2.786(1)$	103
C17-H17C $C g 1^{\mathrm{i}}$	0.96	2.75	$3.384(1)$	124
Symmetry code: $(\mathrm{i})-x+1,-y, z+1$.	$C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring			

Symmetry code: (i) $-x+1,-y, z+1$. Cg1 is the centroid of the C1-C6 ring.

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA . U_{\text {iso }}$ values were set equal to $1.5 U_{\text {eq }}$ of the carrier atom for methyl H atoms and $1.2 U_{\text {eq }}$ for the remaining H atoms. In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The intramolecular hydrogen bond is shown as a dashed line.

Grant Allocation (SAGA) grant No.304/PFIZIK/653003/ A118. VS is grateful to the University Grants Commission (UGC), Bangalore and New Delhi, for the award of a teacher fellowship under the Faculty Improvement Programme (FIP) of X Plan period.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. \& Dharmaprakash, S. M (2006a). Acta Cryst. E62, o896-o898.
Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. \& Dharmaprakash, S. M. (2006b). Acta Cryst. E62, o1710-o1712.
Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. \& Dharmaprakash, S. M. (2006c). Acta Cryst. E62, o3096-o3098.
Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. \& Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2991-o2992.

